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ABSTRACT
Web service composition is a difficult and important requirement
for the success of the Semantic Web. In this paper, we present a
method of facilitating automated service composition through the
declarative specification of potential interactions between them (or
workflows) and the provision of semantic matching support to al-
low the automated interpretation of the interaction specifications.
The key idea is that matching allows us, at run time, to find the
correspondences among independently defined heterogeneous web
service descriptions. Our approach extends existing methods to
allow interaction models to convey relevant matching information
and develops novel semantic matching techniques which allow for
the interpretation of logical terms. The preliminary evaluation re-
sults show high efficiency and effectiveness of the proposed match-
ing techniques.

1. INTRODUCTION
The automation of Web service interaction and composition is a

major goal of the (Semantic) Web and its achievement would have
profound affects on the potential of machine intercommunication.
However, this is a difficult goal to achieve and a great deal of work
has been invested in its pursuit without, so far, any very definite
success. The difficulties surrounding this problem are grounded in
the fact that it is very hard to have successful and predictable in-
teractions between systems or services with discordant semantics,
and yet it is also impractical and limiting to force a single view of
semantics on an unlimited number of potential services; such an
approach could only be feasible within a small, controlled domain.
The tension between the need for open, unrestricted semantics and
the need for semantic uniformity has driven much of the research
on the (Semantic) Web.

In this paper, we present a novel approach to this problem. We
facilitate web service composition through the use of declarative
specifications of the interactions in which the services may be in-
volved and then provide semantic matching techniques so that web
services can interpret these interaction specifications without ad-
hering to any specific form of knowledge representation. The inter-
action specifications, referred to asinteraction models, are shared
between services or peers on the network and can be discovered
prior to or during run-time. This idea of developing declarative in-
teraction models to enable unforeseen interactions during run-time
is not new; rather, we are building on work posited in [4] in which
the philosophy and practice of controlling interactions between dis-
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parate services are defined through the use of the Lightweight Coor-
dination Calculus (LCC) language. Using these interaction models,
the problem of discordant semantics is thus reduced to the seman-
tics directly concerning the interaction in question; everything else
can be safely ignored. These interaction models can be considered
as contracts describing the semantics necessary for the integrity of
specific interactions. The sharing of these interaction models al-
lows services, or peers, to participate with other, unknown, peers
in interactions that had not previously been anticipated. In order
to understand what the interaction means and what it involves, it
is necessary for each peer to interpret the terms in the interaction
with respect to its own knowledge, thereby solving semantic het-
erogeneity problem arising between the part of its knowledge and
the knowledge contained in the interaction model. Additionally, in
order for the interaction to be successful, all peers involved should
interpret the knowledge in the same way. Our approach, therefore,
does not remove the problem of semantic heterogeneity entirely;
rather, it substantially limits the scope of this problem and provides
a specific context in which it has to be solved. This limitation of
scope allows us to build feasible run-time semantic matching tech-
niques.

We address the semantic heterogeneity problem through

• the extension of the LCC language to allow for contextual
information to be provided to the matching process.

• the applications of novel semantic matching techniques in-
tended to match first order logic terms that express both the
constraints to be interpreted by a peer and the peer capabili-
ties;

Context [10] thus becomes an object that can be circulated, mini-
mizing the effects of semantic heterogeneity. The application of our
semantic matching techniques, aided by contextual information, in
place of unification, extends the applicability of these techniques
from a closed to an open domain. We do not limit this notion of
context and allow for the possibility of multiple contexts. Any in-
formation that might be thought pertinent to the matching process
can be included as context. In this paper, we discuss a few exam-
ples of what this context may be but, in the general case, the context
is not limited to such examples. Our semantic matching techniques
build on previous work done in this field [8, 9] but extend this work
in a new direction to enable the semantic matching of logical terms.
Preliminary evaluation results support viability of our approach.

The rest of the paper is organized as follows. Section 2 uses a
motivating scenario to outline the lifecycle of the interaction pro-
cess. Section 3 introduces the LCC language and describes the
extensions we have made to it. Section 4 outlines the matching



techniques. Section 5 presents some preliminary evaluation results.
Section 6 explains our work in relation to other work in the field
and explains the additional contributions we have made. Section 7
summarizes the paper and draws conclusions.

2. THE APPROACH
The OpenKnowledge system [22] is designed to allow peers on

a network to search for interaction models that describe the inter-
action which they wish to initiate and to locate other peers to play
the necessary roles in the interaction (with the initiating peer usu-
ally playing at least one role). Neither the interaction model nor the
other peers need to be known before run-time, though this can be
the case if desired. The work in this paper facilitates the automatic
interpretation of these interaction models so that the initiating peer
can determine whether the interaction model is really appropriate
for its needs and peers potentially suitable for playing other roles
can determine how they are able to fulfil the roles and whether the
consequences of that role are compatible with their goals.

The lifecycle of an interaction is as follows [22]:

• STEP 1 The initiating peer must first locate an appropriate
interaction model that results in the goals it wishes to sat-
isfy which can either be already known to it can be found via
the discovery service. A discovery service, using lightweight
matching techniques, such as keyword matching, returns in-
teraction models satisfying the request. The description of
a discovery service is out of scope of this paper. We refer
an interested reader to [12] as one of the possible implemen-
tations. Once these potentially suitable interaction models
have been located, semantic matching is used to determine if
they are appropriate for the task in hand.

• STEP 2The discovery service (discussed in Step 1) will find
potentially suitable peers through matching the role descrip-
tion in the interaction model with the descriptions that peers
give of their capabilities;

• STEP 3Potentially suitable peers are contacted and, if they
are available and willing, will be sent a copy of the interac-
tion model;

• STEP 4Each peer will perform semantic matching to inter-
pret the requirements and effects of the interaction. If they
are happy with the consequences of the role and are able to
fulfil the constraints, they will return this information.

• STEP 5The suitable peers are ranked according to the trust
values associated with them, and, in the advanced case of ap-
proximate matching, their matching scores. This trust value
may come from the results of previous interactions with the
peers and is not discussed in this paper. The highest ranked
peers are approached to play the roles in the interaction model.

In this paper we concentrate on Steps 4, which is when the match-
ing of peer capabilities with the role constraints is performed.

EXAMPLE 1. (Wine selling on the web) James is a wine mer-
chant and regularly buys online from known distributors with whom
he has an established relationship. In addition to this, he is keen to
find good deals and special offers from unknown distributors. He
sells his goods to customers in his shop and online and has different
methods of doing this: for example, customers may want to request
a particular kind of wine or may wish to provide some constraints
such as price, color, etc., and would accept recommendations on
that basis. James is keen to advertise himself as a wine seller to

as many potential customers as possible and to be accommodating
in his interactions with them so as to encourage custom. He also
wishes to actively search for suppliers to ensure that he is always
able to fulfil his orders and replenish his stock and to ensure he
keeps his costs to a minimum.

It is advantageous that as much as possible of this is done auto-
matically. James will therefore have a peer representing him which
will become involved in an interaction either by initiating it or by
being approached by another peer who wished to initiate an inter-
action. Here, we list the necessary steps for James’s peer to initiate
an interaction, and describe the behavior of the peers who are ap-
proached to become involved in the interaction.

If James wishes to proactively sell wine, his peer will first select
an interaction model either from ones it knows or through discov-
ery, locate a peer who wishes and is able to play the role of being a
customer in a wine selling context and then initiate the interaction.

3. EXPRESSING INTERACTIONS
In this section, we briefly describe the lightweight coordination

calculus (LCC) on which our interaction language is based; further
details can be found in [4]. We then describe the extensions we
have made to this language to facilitate semantic matching.

3.1 LCC
LCC is designed to allow a simple, lightweight method of devel-

oping declarative descriptions of interactions. Figure 3.1 defines
the syntax of LCC. An interaction model written in LCC consists
of a set of clauses, each describing a role in the interaction. We list
below the essential components of a role descriptor.

• Peer identifiers for peers involved in the interaction, which
consist of the predicatea, which has arguments detailing the
role type of the relevant peer and the particular identifier of
the peer playing that role in the current interaction.

• An ordered sequence of activities that the peer must perform
in the execution of the role. These activities may be:

– message passing. Messages are either outgoing to an-
other peer playing a given role defined by the interac-
tion model (⇒), or incoming from another peer playing
such a role (⇐). If the message is incoming, the peer
cannot proceed further with the role until it has received
it.

– changing to another role (whose description must also
be contained in this interaction model). When a peer
changes to another role the extra arguments attached to
the role identifier might be necessary: information that
has been discovered during the performance of the role
so far may need to be passed to the new role.

• A sequence operator (‘then’) and a choice operator (‘or’ ) to
connect activities.

• Constraints, which are attached to activities and describe un-
der what circumstances they may be performed under. Con-
straints can be attached to outgoing messages or to role changes:
incoming messages can always be received by peers and thus
cannot have constraints on them. Additionally, constraints
may be used to representconsequences of message pass-
ing. Throughout this paper, we will tend to refer to both
constraints and consequences as constraints, since they are



Model := Clause, ...

Clause := Role :: Def

Role := a(Type, Id)
Def := Role | Message | Def then Def |

Def or Def

Message := M ⇒ Role | M ⇒ Role ← C |
M ⇐ Role | C ← M ⇐ Role

C := Constant | P (Term, ...) | ¬C | C ∧ C |
C ∨ C

Type := Term

Id := Constant | V ariable

M := Term

Term := Constant | V ariable | P (Term, ...)
P := Constant

Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Figure 1: LCC syntax

syntactically identical and the issues surrounding their inter-
pretation are the same. We only distinguish when this is nec-
essary for clarity: for example, when we are discussing a
specific example.

The constraints are the aspects of an interaction model in which
the meaning of that interaction model is grounded and a peer can-
not understand whether it can perform the role or what the effect
of performing the role will be to it unless it can interpret these con-
straints with respect to its own knowledge. LCC does not enforce
any commitment to the system of logic through which constraints
are solved, so different peers can use different constraint solvers
(including human intervention). The constraints in LCC are writ-
ten in first-order CNF.

EXAMPLE 2. (A Wine Selling Interaction Model) In this sec-
tion, we describe one of the interaction models used by the wine
merchant, described in Figure 2. This interaction model could be
one already known to James’s peer and may be stored by him in
a manner facilitated by the OpenKnowledge interface; for exam-
ple, Figure 4 describes a way in which James’s interaction models
may be stored. In such a case, the contextual information derived
from this storage hierarchy could be useful during matching. How-
ever, an interaction model discovered during run-time may have no
such information attached to it, and even if the interaction model is
already known, James may not choose to organize his interaction
models so carefully. The improvement this gives to the quality of
the semantic matching means it is in the user’s interests to do this
but it is not obligatory. The interaction model describes, for each of
the two roles in the interaction (customer andwine merchant),
the messages that are passed between them during this interaction.
Since there are only two roles in this interaction, the message pass-
ing described in them is symmetric. In addition, the constraints and
consequences of the message passing is described.

The message passing is indicated by the double arrows (⇒,⇐):
the messages that are to be sent are shown to left of these arrows
and the role from whom they are expected or to which they are to
be sent (wine merchant or customer) are shown on the right.
Since each role description is written from the point of view of a
peer playing the role, it is only necessary to mention a single role
in the message passing; the other role is implicit. To the left-hand
side of the message are the constraints: for example,choose wine

and recommend. These can only be attached to messages to be

sent as there are never constraints on receiving messages. Either
sent or received messages can, in some cases, have consequences
instead. In Figure 2 we can see that there is a consequence,owns,
to thecustomer on the receiving the messagesold. Sending the
messagesold also has consequences for thewine merchant. It
can be seen from the message passing that the ordering is fully de-
termined. Thewine merchant cannot proceed with its role until
it has received a message from thecustomer, and thus this mes-
sage from the customer must be the one that initiates the interac-
tion. Every message after that can only be sent after the receipt of
the previous message.

First thechoose wine constraint have to be satisfied by the peer
playing thecustomer role. During the process it discovers the
pertinent information that is to be sent in the message. In order to
satisfy the constraint, it must interpret it by mapping it to a con-
straint which it knows how to satisfy, and then run its constraint
satisfaction program on it. It then waits to receive a recommenda-
tion from thewine merchant, together with a specific price. It
must then attempt to satisfy theaccept(Pr, M) predicate, which
determines whether the response is acceptable. If the constraint
is satisfied, it then waits to receive a message confirming the sale.
The consequence of receiving this message is that thecustomer

peer now owns these bottles (there are also likely to be financial
consequences but these omitted for the sake of brevity).

Note that in order to understand the interaction model, the peer
only need interpret the constraints and consequences. The predi-
cates in the messages are just place holders that allow the identi-
fication of the particular message; sensible names for these predi-
cates are used to make things easier for the interaction model de-
signer and for any users who wish to look at it but do not need to
be interpreted by the peers.

3.2 Contextual LCC
As described above, each peer must be able to interpret and then

satisfy the constraints on the activities in the role it desires to play
before it can either assert that it is able to play the role or start the
interaction. If there is no prior agreement on what interactions will
take place or on the interaction models that describe them and there
is no central ontology or definitive method of knowledge represen-
tation, then there is no way of ensuring that a peer’s way of repre-
senting the constraints it can satisfy will match the way in which
these constraints are represented in the interaction model. Peers
cannot be expected to have a uniform vocabulary, nor can they be
expected to represent complex concepts in the same way.

In LCC, the matching of a constraint that a peer knows how to
satisfy (or at least, knows how to determine whether it can satisfy)
and a constraint which it must satisfy in a particular interaction
model is done through unification; if the representation and vocab-
ulary used is not the same, matching will fail, and thus it is only
applicable in a closed domain. In an open domain, peers will find
themselves unable to understand constraints even on roles that they
have the ability to play.

We propose to extend LCC to facilitate semantic matching on the
constraints by adding contextual information to interaction mod-
els. It is possible to perform semantic matching on constraints even
without any contextual information; however, this can make it dif-
ficult to find good semantic matches.

Another aspect missing from the LCC definition that is important
in matching is type information. If type information can be attached
to the arguments of constraints then it is much easier to determine
how well they map to known constraints. This is especially true
since, when the matching is being done on constraints, before the
interaction commences, it is likely that most of the arguments of



a(customer, C) ::
request(wine(P1, P2, R, C, N) ⇒ a(wine merchant, W ) ← choose wine(P1, P2, R, C, N)

recommendation(Pr, M) ⇐ a(wine merchant, W ) then

buy(M, N2) ⇒ a(wine merchant, W ) ← accept(Pr, M, N2) ∧ N2 ≤ N

owns(M, N2) ← sold(M, N2) ⇐ a(wine merchant, W )

a(wine merchant, W ) ::
request(wine(P1, P2, R, C, N) ⇐ a(customer, C) then

recommendation(Pr, M) ⇒ a(customer, C) ← recommend(R, C, M, Pr) ∧ Pr > P1, P2

∧ in stock(X, M) ∧ X ≥ N ∧ price(M, Pr)
buy(M, N2) ⇐ a(customer, C) then

in stock(Y, M) ← sold(M, N2) ⇒ a(customer, C)
∧ Y = X − N

Figure 2: Wine buying interaction model

Constant := Context : (V alue, Class)
V ariable := Context : (Holder, Class)

Class := V alue | Holder

Context := V alue | Holder

V alue := lower case character sequence or number
Holder := upper case character sequence or number

or white space

Figure 3: Alterations to LCC syntax required by Contextual
LCC

constraints will be variables and thus without this type information
it may be impossible to unambiguously determine their meaning.

The changes to the definition that are required in order to re-
place resolution with semantic matching are minimal. Figure 3.2
details these definitions: the syntax of Contextual LCC is identical
to the syntax of LCC with these specified changes. The differences
are the way in whichConstants andV ariables are defined and
the addition of four new objects:Class, Context, V alue and
Holder. Constants and Variables both become complex objects
which contain, respectively, avalue or a holder (whose defini-
tions are nearly identical to the original definitions ofconstant

andvariable), and information pertinent to that value or holder:
type information (which we refer to here asclass to avoid confu-
sion with thetype definition that refers to role types) and contextual
information. Class information is a value or a holder.Context

information is less constrained: anything that defines the context
in a term could be used can provide the context, for example, the
classification of the interaction model [9], Web directories [1] or
even user preferences [25].V alue is defined identically to LCC
constant; Holder is similar toV ariable but, in addition to an up-
per case character sequence or number being an acceptable input,
white space is also acceptable and can be used in the case that an
interaction model designer does not know the pertinent information
or does not wish to input it. The design of this syntax means that
it is easy to add extra attributes to constant and variable definitions
should we wish to do so.

Contextual information can be derived from the context in which
the interaction model is used. For example, users might store infor-
mation about their interaction models in a classification such as the
one illustrated in Figure 4. The interaction model shown in Figure 2
would be the one stored underWine-Selling-Recommendation.
This contextual information can be attached to any object in the in-
teraction model and may prove useful in its semantic interpretation.

IMs

Wine
Selling

Specific
Recommendation

Buying

Travel

Figure 4: James’s interaction models (IM) classification

EXAMPLE 3. (Marking up the Interaction Model) Figure 5 shows
part of the interaction model of Figure 2 with the additional mark-
up included. Since the interaction model with all this information
explicit is rather unwieldy, we include only a small section.

Both the type and the context can be extremely useful in interpret-
ing the semantics. For example, thewine context indicates that the
variableC, of typecolour, should be instantiated by red or white;
and that the variableM , of typemake should be instantiated by
some make of wine and not, for example, a make of car.

Notice that predicates, which, in the LCC syntax, are defined
as Constants, have the same structure as any other constraint:
Context : (V alue, Class). It may be felt that type information
is inappropriate in describing predicates and, if so, this attribute
will be instantiated by a white space, as occurs in the type attribute
of choose wine in Figure 5. However, if the interaction model
designer or user wishes to give type information to predicates, he
is at liberty to do this.

4. STRUCTURE MATCHING
In order to perform semantic matching between the first-order

constraints found in an LCC interaction model, we consider the
first-order terms as trees and perform tree matching on them. There
are two stages in the matching process:

1. Node matching: solves the semantic heterogeneity problem
by considering only labels at nodes and their contextual in-
formation inside constants in interaction model and web ser-



a(customer, C) ::
request(wine(P1, P2, R, C, D, N) ⇒ a(wine merchant, W ) ← (Cxt : choose wine, )) (Cxt : (P1, maxium price),

Cxt : (P2, minimum price),
Cxt : (R, region),
Cxt : (C, colour),
Cxt : (N, number of bottles)

Cxt = (wine-selling-recommendation)

Figure 5: Semantic markup of interaction model

vice descriptors.

2. Tree matching: exploits the results of the node matching and
the structure of the term to find an overall match between the
terms in a web service description and in interaction model.

4.1 Node matching
Semantic matching, as from [8] is based on the 2 key notions:

• Concept of a label, which is a logical formula encoding the
meaning of a label;

• Concept of a node, which is a logical formula that encodes
the meaning of a node, given that it has a certain label and it is
in certain position in the term tree and in the IM classification
(see Figure 4 for example).

We say that two nodesn1 andn2 in the treesT1 andT2 (se-
mantically) match iff the formula ”c@n1 iff c@n2” holds given the
available background knowledge, wherec@n1 andc@n2 are the
concepts at nodes ofn1 andn2 respectively.

The semantic node matching algorithm, as introduced in [9],
takes as input two term trees and computes as output a set of cor-
respondences holding among the nodes in the trees in four macro
steps:

• Step 1: for all labelsL in two trees, compute concepts of
labels,CL. Step 1 is concerned with automatic translation
of ambiguous natural language labels taken from the term
tree elements into an internal logical language with boolean
semantics (see [9] for more detail). The process involves
tokenization, lemmatization, querying the Oracle (such as
WordNet [19]) in order to determine the label senses, and,
finally, the complex concept construction. The last step is
concerned with interpretation of certain natural language la-
bels as the logical connectives (for example both natural lan-
guageand andor are translated into disjunction) and word
sense disambiguation (see [17] for more detail). Thus, for ex-
ample, the concept of labelNumber of bottlesis computed as
CNumber of bottles = CNumber⊓Cbottles, whereCbottles =
〈bottle, sensesWN#4〉 is taken to be the union of four Word-
Net senses, and similarly fornumber.

• Step 2: for all nodesN in two trees, compute concepts at
nodes,CN . During Step 2 we analyze the meaning of the
positions that the labels of nodes have in a tree. Term trees
are hierarchical structures where the path from the root to
a node uniquely identifies that node (and also its meaning).
We define the logical formula for a concept at node as a con-
junction of concepts of labels located in the path from the
given node to the root. For example, in the Figure 6, the con-
cept at node for the node Region(C) is computed as follows:
CRegion(C) = CWine ⊓ CChampagne ⊓ CRegion.

In order to constrain the set of possible concept at node in-
terpretations the sense filtering techniques are used (see [17,

9] for detailed discussion). The main goal of sense filtering
techniques is to filter out irrelevant (for the given matching
task) Oracle senses from concepts of labels. For all concepts
of labels we collect all their ancestors and descendants. We
call them a focus set. Notice that the interaction model it-
self can be classified in tree like structure (see Figure 4 for
example). Therefore focus set is enriched with concept of
labels of the interaction model and its ancestors in the IM
classification. For example, as from Figures 4 and 6, for the
concept at nodeCRegion(C) the focus set contains the fol-
lowing concepts of labels:CWine, CChampagne, CRegion

taken from the term tree along withCWine, CSelling and
CRecomendation taken from IM classification. Then, all Or-
acle senses of atomic concepts of labels from the focus set
are compared with the senses of the atomic concepts of la-
bels of the concept at node. If a sense of atomic concept of
label is connected by an Oracle relation with the sense taken
from the focus set, then all other senses of these atomic con-
cepts of labels are discarded. Therefore, as a result of sense
filtering step we have (i) the Oracle senses which are con-
nected with any other Oracle senses in the focus set or (ii)
all the Oracle senses otherwise. After this step the meaning
of concept of labels is reconciled in respect to the knowledge
residing in both the term tree and IM classification structures.

• Step 3: for all pairs of labels in two trees, compute relations
amongCL’s. Step 3 is concerned with acquisition of ”world”
knowledge. Relations between concepts of labels are com-
puted with the help of a library of element level semantic
matchers (see [9] for more detail). These matchers take as in-
put two concepts of labels and produce as output a semantic
relation (e.g., equivalence, more/less general) between them.
For example, from WordNet we can derive that region and
area are synonyms, and therefore,Cregion = Carea.

• Step 4: for all pairs of nodes in two trees, compute rela-
tions amongCN ’s. Step 4 is concerned with the computation
of the relations between concepts at nodes. This is done by
reducing this problem to a propositional satisfiability (SAT)
problem and by exploiting state of the art SAT decider [8, 9].

It is important to notice that Step 1 and Step 2 can be done once
for all, independently of the specific matching problem. Step 3 and
Step 4 can only be done at run time, once the two trees which must
be matched have been chosen.

4.2 Tree matching
In order to match first-order terms, we consider them as trees.

Thus a constraint such aswine(Cxt : (champagne, region),
Cxt : (white, colour) would be represented as shown in Figure 6,
whereCxt is left implicit.

In order to satisfy a set of constraints in a message in an interac-
tion model, it is necessary to satisfy at least one constraint of ev-
ery disjunction in the CNF. In a more complex situation, we might



(P)

(C)

(T)

Wine

Colour

White(C)

Champagne (T)

Region

P = predicate; T = type; C = constant

Figure 6: Constraint wine(champagne, white) expressed as a
tree

match a single constraint to many constraints, or match many-to-
many; however, we only consider one-to-one matching in this pa-
per.

Semantic node matching is done prior to the tree matching pro-
cess, and the results of this are used to determine which nodes in
the trees correspond to each other, and, when extended to deal with
approximate mapping, how strong this correspondence is. Seman-
tic tree matching is thus the combination of the results of semantic
node matching with techniques that take into account the structure
of the term. It must determine not only whether the objects used
are the same or similar but whether they are organized in the same
manner. This organization of the terms encodes important semantic
information about how they relate to one another, and the semantic
tree matching techniques determine whether these relationship are
the same or similar between apparently different constraints.

In order to participate in this process, peers must have represen-
tations of constrains they know how to satisfy written in the same
manner as the LCC constraints. This does not enforce any control
on the representation of their knowledge base in general, it merely
requires that peers are able represent their abilities in this manner
and that they can satisfy such constraints. These known constraints
are what the matching process must refer to.

We say that two treesT1 andT2 match iff for any noden11 in
T1 there is a noden21 in T2 such that

• n11 semantically matchesn21;

• n11 andn21 reside on the same depth inT1 andT2 respec-
tively;

• all ancestors ofn11 are semantically matched to the ancestors
of n21;

At this stage, we assume that the problem of semantic node
matching has been dealt with and can be called as a subprocess of
the semantic structure matching, the details of which are discussed
in Section 4.1.

The pseudo code in Figure 7 illustrates an algorithm for exact
structure matching.exactStructureMatch takes two trees of nodes
(i.e., tree representation of LCC terms)sourceand target as an
input. Here and throughout the paper we assume that the source
tree is derived from an interaction model constraint and the target
tree represents the term derived from the peer capability descrip-
tion. exactStructureMatch returns an array ofMappingElements
holding between the nodes of the trees if there is an exact match
between them and null otherwise. Array ofMappingElements re-
sult is created (line 12) and filled byexactTreeMatch (line 13).
allNodesMappedchecks whether all the nodes of source tree are
mapped to the nodes of the target tree (line 14). If this is the case
there is an exact structure match between the trees and the set of
computed mappings is returned (line 15).exactTreeMatch takes

1.Node struct of
2. int nodeId;
3. String label;
4. String cLabel;
5. String cNode;
6.MappingElement struct of
7. int MappingElementId;
8. Node source;
9. Node target;
10. String relation;

11.MappingElement[] exactStructureMatch(Tree of Nodes
source, target)

12. MappingElement[] result;
13. exactTreeMatch(source,target,result);
14. if (allNodesMapped(source,target,result))
15. return result;
16. else
17. return null;

18.void exactTreeMatch(Tree of Nodes source,target,
MappingElement[] result)

19. Node sourceRoot=getRoot(source);
20. Node targetRoot=getRoot(target);
21. String relation= nodeMatch(sourceRoot,targetRoot);
22. if (relation=="=")
23. addMapping(result,sourceRoot,targetRoot,"=");
24. Node[] sourceChildren=getChildren(sourceRoot);
25. Node[] targetChildren=getChildren(targetRoot);
26. For each sourceChild in sourceChildren
27. Tree of Nodes sourceChildSubTree=

getSubTree(sourceChild);
28. For each targetNode in target
29. Tree of Nodes targetChildSubTree=

getSubTree(targetChild);
30. exactTreeMatch(sourceChildSubTree,

targetChildSubTree,nodesToMatch);

Figure 7: Pseudo Code for Structure Matching Algorithm

two trees of nodes (i.e., tree representation of LCC terms)source
and target and array of MappingElementsresult as an input. It
recursively fillsresultwith the mappings computed bynodeMatch
(line 23).exactTreeMatchstarts from obtaining the roots ofsource
and target trees (lines 19-20). The semantic relation holding be-
tween them is computed bynodeMatch (line 21) implementing
the node matching algorithm. If the relation is equivalence, the
corresponding mapping is saved toresult array (lines 22-23) and
the children of the root nodes are obtained (line 24-25). Finally the
loops onsourceChildrenandtargetChildren(lines 26-30) allow to
call exactTreeMatchrecursively for all pairs of sub trees rooted at
sourceChildrenandtargetChildrenelements.

The above algorithm is designed to succeed for equivalent terms
and to fail otherwise. It expects the trees to have the same depth
and for all matching nodes to have the same number of children.

EXAMPLE 4. (Semantic matching in the Interaction Model) Imag-
ine, for example, that awine merchant peer, acting on James’s
behalf, sent the interaction model described in Figure 2 to a peer
that advertised that it wished to participate in wine buying. This
peer would have to evaluate its ability to satisfy the constraints of
the role and the desirability of satisfying the consequences of the
role before it could play the part. The first constraint it must satisfy
is choose wine(P1, P2, R, C, N), which is illustrated with full
mark-up information in Figure 5. Imagine that it knows of no such
constraint but that it knows a constraintpick(C, N, A, P1, P2).
These two constraints, with type information, are represented in
Figure 8.

The node matching algorithm first attempts to match the root
node of the left-hand tree,choose wine, with the root node of
the right-hand tree,pick. A semantic matcher will find an equiv-
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Figure 8: Comparison of two constraints as trees

alence betweenchoose and pick, but thewine element has no
match inpick, thus indicating that perhapschoose wine is more
specific thanpick. However, the contextual information can help
here, since it gives the information that the terms must be inter-
preted within awine context. Thuspick becomes equivalent to
choose wine. Next, a match forMax price must be found amongst
the node at the same level in the right-hand tree. Order is not im-
portant here, so a perfect match can be found with the fourth at-
tribute in the right-hand tree. Perfect matches can be found in the
same way for all the nodes with the exception ofRegion; how-
ever, semantic matching can determine that this is equivalent, in
the given context, toArea. All nodes in both trees therefore have
exact matches, and so an exact match is found between the trees.

4.3 Approximate matching
The matching techniques described in the previous section rely

on the semantic content of the constraints known by the peers being
identical with that of the constraints found in a particular interac-
tion model. Whilst it is clearly ideal that a peer should perform a
role only if it can find constraints it knows that map exactly to the
constraints that are required for the performance of the role, this is
a heavy demand that may often mean that no suitable peer can be
found at all. In practice, we wish to find ‘good enough’ solutions
to queries [11] if perfect answers are no available.

We say that two nodesn1 andn2 in the treesT1 andT2 approx-
imately match iffc@n1 R c@n2 holds given the available back-
ground knowledge, wherec@n1 andc@n2 are the concepts at nodes
of n1 andn2, and whereR ∈ {≡,⊆,⊇,∧,⊥, not related}.

We say that two treesT1 andT2 match iff there is at least one
noden11 in T1 and a noden21 in T2 such that

• n11 approximately matchesn21;

• all ancestors ofn11 are approximately matched to the ances-
tors ofn21;

The key difference between exact and approximate match is in
the fact that in the latter case we allow mismatches both on the node
and structure level.

The pseudo code in Figure 9 illustrates approximate structure
matching algorithm. In contrast toexactStructureMatchpresented
in Figure 7approximateStructureMatch takes as an input not
only sourceandtarget term trees but alsothresholdallowing to se-
lect highly similar term trees.approximateTreeMatch fills result
array (line 3) which stores the mappings holding between nodes of
the trees.approximationScoreis computed (line 4) byanalyzeMis-
matches. If approximationScoreexceedsthresholdthe mappings
calculated byapproximateTreeMatch are returned (line 6). In
contrast toexactTreeMatch presented in Figure 7approximate-
TreeMatch considers also semantic relations other then equiva-
lence (line 13) and stores them inresult array (line 14). ana-
lyzeMismatchesdecides the importance of the mismatches among
the nodes of the trees (if any) and calculates the aggregate score of
tree match quality by exploiting a tree edit distance algorithm [30,
28].

1.MappingElement[] approximateStructureMatch(
Tree of Nodes source, target, double threshold)

2. MappingElement[] result;
3. approximateTreeMatch(source,target,result);
4. double approximationScore=analyzeMismatches(source,

target,result);
5. if (approximationScore>threshold)
6. return result;
7. else
8. return null;

9. void approximateTreeMatch(Tree of Nodes source,
target,MappingElement[] result)

10. Node sourceRoot=getRoot(source);
11. Node targetRoot=getRoot(target);
12. String relation= nodeMatch(sourceRoot,targetRoot);
13. if (relation!="Idk")
14. addMapping(result,sourceRoot,targetRoot,relation);
15. Node[] sourceChildren=getChildren(sourceRoot);
16. Node[] targetChildren=getChildren(targetRoot);
17. For each sourceChild in sourceChildren
18. Tree of Nodes sourceChildSubTree=

getSubTree(sourceChild);
19. For each targetNode in target
20. Tree of Nodes targetChildSubTree=

getSubTree(targetChild);
21. approximateTreeMatch(sourceChildSubTree,

targetChildSubTree, nodesToMatch);

Figure 9: Pseudo Code for Approximate Structural Matching

Let us give a brief (due to a lack of space) description of the tree
edit distance problem. In its traditional formulation, the tree edit
distance problem considers three operations: (a) vertex removal,
(b) vertex insertion, and (c) vertex replacement [28]. To each of
these operations, a cost is assigned. The solution of this problem
consists in determining the minimal set of operations (i.e., the one
with the minimum cost) to transform one tree into another. Another
equivalent (and possibly more intuitive) formulation of this prob-
lem is to discover a (proper) mapping with minimum cost between
the two trees. The concept of (proper) mapping (introduced in [28])
is defined next.

Let Tx be a tree and letTx[i] be the i-st vertex of treeTx in a
preorder walk of the tree. A (proper) mapping between a treeT1 of
sizen1 and a treeT2 of sizen2 is a setM of ordered pairs(i, j),
satisfying the following conditions for all(i1, j1), (i2, j2) ∈ M :

1. i1 = i2 iff j1 = j2;

2. T1[i1] is on the left ofT1[i2] iff T2[j1] is on the left ofT2[j2];

3. T1[i1] is an ancestor ofT1[i2] iff T2[j1] is an ancestor of
T2[j2].

In our case the approximate structure matching algorithm pro-
duces a partial mapping among the nodes of two trees. In order to
apply a tree edit distance algorithm we have to ensure that it is a
(proper) mapping (i.e, it satisfies the conditions presented above).
The first condition requires a 1 to 1 mapping. Therefore we drop
from the partial mapping all the correspondences that violate this
requirement. The second condition requires the order preservation
among sibling nodes. Notice that sibling ordering does not influ-
ence on the ability of the peer to interpret the constraint. There-
fore, in order to satisfy the condition, the sibling nodes have to be
reordered. Figure 11 illustrate an example of such reordering for
the trees depicted on Figure 10. The third condition enforces the
hierarchical relation between the nodes of the trees. In order to sat-
isfy it we drop from the partial mapping all the correspondences
that violate this condition. Notice that the approximate structure
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Figure 10: Approximate mappings between two constraints
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Figure 11: Reordering of constraints

matching algorithm produces the correspondences which stand for
equivalence, less/more generality and disjointness relations. In or-
der to discriminate among them we modified the costs of the tree
edit distance operations as depicted in Table 1.

Table 1: Cost of tree editing operations
Operation Cost
replace(a,b),a = b 0
replace(a,b),a ⊑ b 0.5
replace(a,b),a ⊒ b 0.5
replace(a,b),a ⊥ b ∞
replace(a,b), a is not related to b 1
insert(a) 1
delete(a) 1

To ensure a quick prototyping approach we selected a simple tree
edit distance algorithm from Valiente’s work [29]. In this algorithm
deletion and insertion operations are performed only on the leave
nodes. When deleting a non-leaf nodev, every node in the subtree
rooted atv has to be deleted first. The same applies to the insertion
of non-leaf nodes. The algorithm finds the least-cost transformation
of an ordered treeT1 andT2 in O(|n1||n2|) time usingO(|n1||n2|)
additional space (see Lemma 2.20 in [29]).

Since we were interested in similarity rather than in distance we
exploited the following similarity score:

Sim = 1 −
EditDistance

max(n1, n2)
(1)

wheren1 andn2 stand for the number of nodes in the trees.

EXAMPLE 5. (Approximate Matching in the Interaction Model)
Imagine if the classification that thecustomer peer was attempt-
ing to matchchoose wine(P1, P2, R, C, N) to was in fact,
pick(Ag, Ct, P1, P2), whereN, P1 andP2 represent the same types
as previously,Ag represents typeage andCt represents type coun-
try. The mappings between these terms are illustrated in Figure
10. The map between the root node would be discovered as ex-
plained in Example 3. The first node at the second level in the
left-hand tree,Max price would, as before, find an exact match,
as wouldMin price. The nodeRegion has a map toCountry,
as, according to the peer’s taxonomy, a region is part of a country
(i.e, Region ⊑ Country). Notice that Colour, Number of Bot-
tles and Age nodes are left unmapped. Therefore the edit distance

between the trees given the weights for the editing operations de-
scribed above is: 0.5+1+1=2.5. The similarity score for the trees
depicted on Figure 10 is 1-2.5/6=0.58.

5. EVALUATION
We have implemented the algorithm described in the previous

section in Java and evaluated its matching quality on the 66 pairs of
similar first order logic terms extracted from different versions of
the Standard Upper Merged Ontology (SUMO)1 and the Advance
Knowledge Transfer (AKT)2 ontologies. We extracted all the dif-
ferences between versions 1.50 and 1.51, and 1.51 and 1.52 of the
SUMO ontology and between versions 1, 2.1 and 2.2 of the AKT-
portal and AKT-support ontologies3. These are both first-order on-
tologies, so many of these differences mapped well to the potential
differences between constraints that we are investigating. However,
some of them were more complex, such as differences in inference
rules, or consisted of ontological objects being added or removed
rather than altered, and had no parallel in our work. These pairs of
terms were discarded and our tests were run on all remaining differ-
ences between these ontologies. We have therefore simulated the
situation when the peer capabilities are defined in one version of the
ontology and the constraints in the interaction model are expressed
exploiting the other version of the same ontology.

We have calculated Recall defined as the ratio of the correct cor-
respondences produced by the matching system to the total number
of correct correspondences. We have also calculated the Recall for
the various values of threshold for approximate structure matching
algorithm. Since all the pairs of terms in the dataset are equivalent
we were unable to calculate Precision defined as the ratio of cor-
rect correspondences to all the correspondences produced by the
matching system. The evaluation was performed on the Pentium 4
computer.

Interestingly enough our exact structure matching algorithm was
able to find 36 correct correspondences what stands for 54% of Re-
call. All mismatches corresponded to structural differences among
first order terms which exact structure matching algorithm is unable
to capture.

The examples of correctly found correspondences are given be-
low:

meeting-attendees(has-other-agents-involved)
meeting-attendee(has-other-agents-involved)

r&d-institute(Learning-centred-organization)
r-and-d-institute(Learning-centred-organization)

piece(Pure2,Mixture)
part(Pure2,Mixture)

has-affiliatied-people(Affiliated-person)
has-affililated-person(affiliated-person)

The first and the second example illustrate the minor syntactic
differences which prevent the unification process to interpret the
term correctly, while the third and fourth examples illustrate the
semantic heterogeneity in the various versions of the ontologies.

Figure 12 presents the Recall of approximate structure matching
algorithm depending on the cut-off threshold value. As from the
figure the algorithm demonstrates high Recall on the wide range of
threshold values. For example, Recall for 0.5 threshold is slightly
lower than 88% what is a high result for any of state of the art

1http://ontology.teknowledge.com/
2http://www.aktors.org
3see http://dream.inf.ed.ac.uk/projects/dor/ for full versions of
these ontologies and analysis of their differences



Figure 12: Recall depending on threshold value

matching systems (see [6] for the latest ontology matching evalua-
tion results).

Table 2 summarizes the time performance of the matching algo-
rithm. It presents the average time taken by the various steps of

Table 2: Time performance of approximate structure matching
algorithm (average on 66 term matching tasks)

Node matching Node matching Tree matching
Step 1 and 2 Step 3 and 4

Time, ms 158.6 4.8 1.2

the algorithm on 66 term matching tasks. As from the table Step 1
and 2 of the node matching algorithm significantly slow down the
whole process. However, as discussed in section 4.1, these steps
correspond to the linguistic preprocessing of the natural language
labels that can be performed once and later reused by the matching
process. Given that the term can be automatically annotated with
the linguistic preprocessing results [9], the term matching task is
performed in average in 6 ms what corresponds roughly to 160 term
matching tasks per second and satisfies to the requirements of run
time web service composition.

6. RELATED WORK
The main contribution of the work presented in this paper is to

provide an alternative approach to Web service composition. The
state of the art approaches to the web service composition either
rely on the manual composition in design time [2] or provide the
support for (semi-)automated web service composition given that
the web services are annotated with the concepts derived from ei-
ther shared ontology or vocabulary [7, 18]. Our approach is in
between of these two extremes. The interaction models described
in this paper differently from [2] do not specify the services partici-
pating in the interaction but define the constraints the services have
to satisfy. This kind of specification on the other hand allows us
to simplify the problem of run time web service composition and
relax a shared ontology requirement.

In particular, Web service composition techniques [7, 18] tend
to assume that (i) services are annotated with terms taken from an
ontology; (ii) this ontology is shared between multiples services or
between query and services; (iii) this ontology is semantically rich
enough to do inference. In our approach we assume that: (i) ser-
vices are annotated with first order terms; (ii) the terms are not
standardized between services; (iii) they are not embedded in a
structure on which to do inference. Additionally the standard web
service composition approaches assume a predefined recruitment
of who will run what services, which depends on large amounts
of pre-interaction organization and is often not practical, whereas

we allow run-time recruitment for services. Moreover, standard ap-
proaches allow run-time composition of simple services into com-
plex ones whereas we use predefined interaction models to define
the ways in which composition can occur. This restriction - of re-
cruiting services for predefined workflows rather than performing
arbitrary composition - means that many of the difficulties that have
proved so far insurmountable become tractable.

The problem of location of web services on the basis of the ca-
pabilities that they provide (often referred as matchmaking prob-
lem) recently have received a considerable attention. Most of the
approaches to the matchmaking problem so far employed a single
ontology approach (i.e., the web services are assumed to be anno-
tated with the concepts taken from the shared ontology). See [24,
14, 15] for example. Probably the most similar to ours was the ap-
proach taken in [23] where the services are assumed to be annotated
with the concepts taken from various ontologies. Then the match-
making problem is solved by the application of the matching algo-
rithm. The algorithm combines the results of atomic matchers that
roughly correspond to the element level matchers exploited by us
in the Step 3 of node matching algorithm in Section 4.1. In contrast
to this work we exploit a more sophisticated matching technique
that allow us to utilize various forms of context.

The ontology matching problem has received a considerable at-
tention in the last years. Many diverse solutions have been pro-
posed so far [21, 16, 5, 26, 3]. However most of efforts were de-
voted to computation of the correspondences holding among the
classes of description logic ontologies. Recently several approaches
allowed computation of correspondences holding among the ob-
ject properties (or binary predicates) [13, 20, 27]. Differently from
these approaches we allow computation of correspondences hold-
ing among first order terms.

7. CONCLUSION
The work described in this paper constitutes a new approach to

web service composition: the idea that through the use of shared
declarative interaction specifications, which can be discovered dur-
ing run-time, we can facilitate automatic interaction between ser-
vices without enforcing strict semantic agreement or annotation.
We presented the techniques through which this idea can be im-
plemented. We extended the established LCC language to allow
for the inclusion of contextual information to facilitate semantic
matching. We then developed novel techniques that allow exist-
ing semantic matching techniques to be applied to the matching of
logical terms through consideration of the structure of those terms.
The combination of these two contributions extend the applicabil-
ity of these specifications of interactions from a closed to an open
environment, and are thus applicable to peer-to-peer networks of
arbitrary size. Finally, we introduced our approximate matching
techniques, which extend our semantic matching techniques to al-
low the return of good enough answers in the case where perfect
answers are unavailable.
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