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ABSTRACT parate services are defined through the use of the Lightweight Coor-

Web service composition is a difficult and important requirement dination Calculus (LCC) language. Using these interaction models,
for the success of the Semantic Web. In this paper, we present athe problem of discordant semantics is thus reduced to the seman-

method of facilitating automated service composition through the tics (E)lrectlfy Ico.ncernlgg t?]e |ntgract|on n quejtllon; evirythlnglglse d
declarative specification of potential interactions between them (or €1 € safely ignored. These interaction models can be considere

workflows) and the provision of semantic matching support to al- as cqntrgcts despribing the semantics necessary fot the integrity of
low the automated interpretation of the interaction specifications, SPECIfic interactions. The sharing of these interaction models al-

The key idea is that matching allows us, at run time, to find the !OV‘_’S SEervices, or peers, to partlt_:lpate with othe_r, _unknown, peers
correspondences among independently defined heterogeneous wel§ intéractions that had not previously been anticipated. In order

service descriptions. Our approach extends existing methods tol0 understand what the interaction means and what it involves, it

allow interaction models to convey relevant matching information IS necessary for each peer to interpret the termg in the |ntgract|on
and develops novel semantic matching techniques which allow for with respect tobllts own I_<novl\3/|edge, thﬁreby solfv_lngksem;alrétlc het(—j

the interpretation of logical terms. The preliminary evaluation re- erogeneity problem arising between the part of its knowledge an

sults show high efficiency and effectiveness of the proposed match-the knowledge conta_ined in the interaction model. Additionally, in
ing techniques. order for the interaction to be successful, all peers involved should

interpret the knowledge in the same way. Our approach, therefore,
does not remove the problem of semantic heterogeneity entirely;
1. INTRODUCTION rather, it substantially limits the scope of this problem and provides
The automation of Web service interaction and composition is a a specific context in which it has to be solved. This limitation of

major goal of the (Semantic) Web and its achievement would have scope allows us to build feasible run-time semantic matching tech-
profound affects on the potential of machine intercommunication. niques.

However, this is a difficult goal to achieve and a great deal of work ~ We address the semantic heterogeneity problem through

has been invested in its pursuit without, so far, any very definite
success. The difficulties surrounding this problem are grounded in
the fact that it is very hard to have successful and predictable in-

e the extension of the LCC language to allow for contextual
information to be provided to the matching process.

and yet it is also impractical and limiting to force a single view of tended to match first order logic terms that express both the
semantics on an unlimited number of potential services; such an constraints to be interpreted by a peer and the peer capabili-
approach could only be feasible within a small, controlled domain. ties:

The tension between the need for open, unrestricted semantics and
the need for semantic uniformity has driven much of the research ~ Context [10] thus becomes an object that can be circulated, mini-
on the (Semantic) Web. mizing the effects of semantic heterogeneity. The application of our
In this paper, we present a novel approach to this problem. We semantic matching techniques, aided by contextual information, in
facilitate web service composition through the use of declarative Place of unification, extends the applicability of these techniques
specifications of the interactions in which the services may be in- from a closed to an open domain. We do not limit this notion of
volved and then provide semantic matching techniques so that webcontext and allow for the possibility of multiple contexts. Any in-
services can interpret these interaction specifications without ad-formation that might be thought pertinent to the matching process
hering to any specific form of knowledge representation. The inter- €an be included as context. In this paper, we discuss a few exam-
action specifications, referred to mseraction modelsare shared  Ples of what this context may be but, in the general case, the context
between services or peers on the network and can be discovereds not limited to such examples. Our semantic matching teChniqUeS
prior to or during run-time. This idea of developing declarative in- build on previous work done in this field [8, 9] but extend this work
teraction models to enable unforeseen interactions during run-timein a new direction to enable the semantic matching of logical terms.
is not new; rather, we are building on work posited in [4] in which Preliminary evaluation results support viability of our approach.

the philosophy and practice of controlling interactions between dis- ~ The rest of the paper is organized as follows. Section 2 uses a
o motivating scenario to outline the lifecycle of the interaction pro-
Copyright is held by the author/owner(s).

WWW2007May 812, 2007, Banff, Canada. cess. Section 3 introduces the LCC language and describes the
_ ' ' ' extensions we have made to it. Section 4 outlines the matching



techniques. Section 5 presents some preliminary evaluation resultsas many potential customers as possible and to be accommodating
Section 6 explains our work in relation to other work in the field in his interactions with them so as to encourage custom. He also
and explains the additional contributions we have made. Section 7wishes to actively search for suppliers to ensure that he is always
summarizes the paper and draws conclusions. able to fulfil his orders and replenish his stock and to ensure he
keeps his costs to a minimum.

It is advantageous that as much as possible of this is done auto-
matically. James will therefore have a peer representing him which
will become involved in an interaction either by initiating it or by
being approached by another peer who wished to initiate an inter-
action. Here, we list the necessary steps for James’s peer to initiate
an interaction, and describe the behavior of the peers who are ap-
proached to become involved in the interaction.

If James wishes to proactively sell wine, his peer will first select
an interaction model either from ones it knows or through discov-
ery, locate a peer who wishes and is able to play the role of being a
customer in a wine selling context and then initiate the interaction.

2. THE APPROACH

The OpenKnowledge system [22] is designed to allow peers on
a network to search for interaction models that describe the inter-
action which they wish to initiate and to locate other peers to play
the necessary roles in the interaction (with the initiating peer usu-
ally playing at least one role). Neither the interaction model nor the
other peers need to be known before run-time, though this can be
the case if desired. The work in this paper facilitates the automatic
interpretation of these interaction models so that the initiating peer
can determine whether the interaction model is really appropriate
for its needs and peers potentially suitable for playing other roles
can determine how they are able to fulfil the roles and whether the
consequences of that role are compatible with their goals.

The lifecycle of an interaction is as follows [22]:

3. EXPRESSING INTERACTIONS

In this section, we briefly describe the lightweight coordination
calculus (LCC) on which our interaction language is based; further
details can be found in [4]. We then describe the extensions we
have made to this language to facilitate semantic matching.

e STEP 1The initiating peer must first locate an appropriate
interaction model that results in the goals it wishes to sat-
isfy which can either be already known to it can be found via
the discovery service. A discovery service, using lightweight 3.1 LCC
matching technigues, such as keyword matching, returns in- ~° ) ] ] ) )
teraction models satisfying the request. The description of ~ LCC is designed to allow a simple, lightweight method of devel-
an interested reader to [12] as one of the possible implemen- the syntax of LCC. An interaction model written in LCC' consists
tations. Once these potentially suitable interaction models of a set of clauseg, each describing a role in thg interaction. We list
have been located, semantic matching is used to determine ifbelow the essential components of a role descriptor.

they are appropriate for the task in hand. . - . . . . .
y pprop e Peer identifiers for peers involved in the interaction, which

consist of the predicatg, which has arguments detailing the
role type of the relevant peer and the particular identifier of
the peer playing that role in the current interaction.

e STEP 2The discovery service (discussed in Step 1) will find
potentially suitable peers through matching the role descrip-
tion in the interaction model with the descriptions that peers
give of their capabilities;

e An ordered sequence of activities that the peer must perform

e STEP 3Potentially suitable peers are contacted and, if they in the execution of the role. These activities may be:

are available and willing, will be sent a copy of the interac-

tion model; — message passing. Messages are either outgoing to an-

e STEP 4Each peer will perform semantic matching to inter- other peer playing a given role defined by the interac-

pret the requirements and effects of the interaction. If they
are happy with the consequences of the role and are able to
fulfil the constraints, they will return this information.

tion model &), orincoming from another peer playing
such a role €). If the message is incoming, the peer
cannot proceed further with the role until it has received

It.
e STEP 5The suitable peers are ranked according to the trust
values associated with them, and, in the advanced case of ap-
proximate matching, their matching scores. This trust value
may come from the results of previous interactions with the
peers and is not discussed in this paper. The highest ranked
peers are approached to play the roles in the interaction model.

— changing to another role (whose description must also
be contained in this interaction model). When a peer
changes to another role the extra arguments attached to
the role identifier might be necessary: information that
has been discovered during the performance of the role
so far may need to be passed to the new role.

In this paper we concentrate on Steps 4, which is when the match-

ing of peer capabilities with the role constraints is performed. * A sequence operatottiien’) and a choice operatofof’ ) to
connect activities.

ExAMPLE 1. (Wine selling on the web) James is a wine mer-
chant and regularly buys online from known distributors with whom e Constraints, which are attached to activities and describe un-
he has an established relationship. In addition to this, he is keen to der what circumstances they may be performed under. Con-
find good deals and special offers from unknown distributors. He straints can be attached to outgoing messages or to role changes:
sells his goods to customers in his shop and online and has different incoming messages can always be received by peers and thus
methods of doing this: for example, customers may want to request cannot have constraints on them. Additionally, constraints
a particular kind of wine or may wish to provide some constraints may be used to represetinsequences of message pass-
such as price, color, etc., and would accept recommendations on ing. Throughout this paper, we will tend to refer to both
that basis. James is keen to advertise himself as a wine seller to constraints and consequences as constraints, since they are



Model := Clause,...
Clause := Role :: Def
Role = a(Type,Id)
Def := Role| Message | Def then Def |
Def or Def
Message := M = Role| M = Role «— C |
M < Role|C «— M <= Role
C := Constant | P(Term,..)| -C|CAC |
cv C
Type := Term
Id := Constant|Variable
M = Term
Term := Constant | Variable | P(Term,...)
P := Constant
Constant := lower case character sequence or number
Variable := upper case character sequence or number

Figure 1: LCC syntax

syntactically identical and the issues surrounding their inter-
pretation are the same. We only distinguish when this is nec-
essary for clarity: for example, when we are discussing a
specific example.

The constraints are the aspects of an interaction model in which
the meaning of that interaction model is grounded and a peer can-
not understand whether it can perform the role or what the effect
of performing the role will be to it unless it can interpret these con-
straints with respect to its own knowledge. LCC does not enforce
any commitment to the system of logic through which constraints
are solved, so different peers can use different constraint solver
(including human intervention). The constraints in LCC are writ-
ten in first-order CNF.

ExAMPLE 2. (A Wine Selling Interaction Model) In this sec-
tion, we describe one of the interaction models used by the wine
merchant, described in Figure 2. This interaction model could be
one already known to James’s peer and may be stored by him in
a manner facilitated by the OpenKnowledge interface; for exam-
ple, Figure 4 describes a way in which James'’s interaction models
may be stored. In such a case, the contextual information derived
from this storage hierarchy could be useful during matching. How-
ever, an interaction model discovered during run-time may have no
such information attached to it, and even if the interaction model is
already known, James may not choose to organize his interaction
models so carefully. The improvement this gives to the quality of
the semantic matching means it is in the user’s interests to do this
but itis not obligatory. The interaction model describes, for each of
the two roles in the interactiorc¢stomer andwine_merchant),
the messages that are passed between them during this interaction
Since there are only two roles in this interaction, the message pass-
ing described in them is symmetric. In addition, the constraints and
consequences of the message passing is described.

The message passing is indicated by the double arrews<£):

sent as there are never constraints on receiving messages. Either
sent or received messages can, in some cases, have consequence
instead. In Figure 2 we can see that there is a consequenees,

to the customer on the receiving the messageld. Sending the
messageold also has consequences for thénc_merchant. It

can be seen from the message passing that the ordering is fully de-
termined. Thavine_merchant cannot proceed with its role until

it has received a message from thestomer, and thus this mes-
sage from the customer must be the one that initiates the interac-
tion. Every message after that can only be sent after the receipt of
the previous message.

First thechoose_wine constraint have to be satisfied by the peer
playing thecustomer role. During the process it discovers the
pertinent information that is to be sent in the message. In order to
satisfy the constraint, it must interpret it by mapping it to a con-
straint which it knows how to satisfy, and then run its constraint
satisfaction program on it. It then waits to receive a recommenda-
tion from thewine_merchant, together with a specific price. It
must then attempt to satisfy thecept(Pr, M) predicate, which
determines whether the response is acceptable. If the constraint
is satisfied, it then waits to receive a message confirming the sale.
The consequence of receiving this message is thatitb&mer
peer now owns these bottles (there are also likely to be financial
consequences but these omitted for the sake of brevity).

Note that in order to understand the interaction model, the peer
only need interpret the constraints and consequences. The predi-
cates in the messages are just place holders that allow the identi-
fication of the particular message; sensible names for these predi-
cates are used to make things easier for the interaction model de-
signer and for any users who wish to look at it but do not need to
be interpreted by the peers.

3.2 Contextual LCC

As described above, each peer must be able to interpret and then
satisfy the constraints on the activities in the role it desires to play
before it can either assert that it is able to play the role or start the
interaction. If there is no prior agreement on what interactions will
take place or on the interaction models that describe them and there
is no central ontology or definitive method of knowledge represen-
tation, then there is no way of ensuring that a peer’s way of repre-
senting the constraints it can satisfy will match the way in which
these constraints are represented in the interaction model. Peers
cannot be expected to have a uniform vocabulary, nor can they be
expected to represent complex concepts in the same way.

In LCC, the matching of a constraint that a peer knows how to
satisfy (or at least, knows how to determine whether it can satisfy)
and a constraint which it must satisfy in a particular interaction
model is done through unification; if the representation and vocab-
ulary used is not the same, matching will fail, and thus it is only
applicable in a closed domain. In an open domain, peers will find
themselves unable to understand constraints even on roles that they
have the ability to play.

We propose to extend LCC to facilitate semantic matching on the
constraints by adding contextual information to interaction mod-
els. Itis possible to perform semantic matching on constraints even

the messages that are to be sent are shown to left of these arrowswithout any contextual information; however, this can make it dif-

and the role from whom they are expected or to which they are to
be sent {(ine_merchant or customer) are shown on the right.
Since each role description is written from the point of view of a
peer playing the role, it is only necessary to mention a single role
in the message passing; the other role is implicit. To the left-hand
side of the message are the constraints: for examplegse_wine
andrecommend. These can only be attached to messages to be

ficult to find good semantic matches.

Another aspect missing from the LCC definition that is important
in matching is type information. If type information can be attached
to the arguments of constraints then it is much easier to determine
how well they map to known constraints. This is especially true
since, when the matching is being done on constraints, before the
interaction commences, it is likely that most of the arguments of



a(customer, C) ::

request(wine(P1, P2, R,C,N) = a(wine_merchant, W) <« choosewine(Pi, P2, R,C,N)
recommendation(Pr,M) < a(wine_.merchant,W) then
buy(M,N2) = a(wine_merchant, W) <« accept(Pr,M,N2) AN No < N
owns(M, Ny) «— sold(M,N2) <« a(wine_merchant, W)

a(wine_merchant, W) ::

request(wine(Py, P2, R,C,N) < a(customer,C) then
recommendation(Pr,M) = a(customer,C) <« recommend(R,C,M,Pr) APr > Py, P
Ain_stock(X,M) N X > N A price(M, Pr)
buy(M,N2) < a(customer,C) then
in_stock(Y,M) sold(M,N2) = a(customer,C)
ANY =X-N
Figure 2: Wine buying interaction model
Constant := Context : (Value, Class)
Variable := Context : (Holder,Class) IMs
Class := Value| Holder .
Context := Value| Holder . Wine
Value := lower case character sequence or number Selling
Holder := upper case character sequence or number t Specific
or white space Recommendation
Figure 3: Alterations to LCC syntax required by Contextual I?uylng
LCC
— Travel

constraints will be variables and thus without this type information

it may be impossible to unambiguously determine their meaning.
The changes to the definition that are required in order to re-

details these definitions: the syntax of Contextual LCC is identical

to the syntax of LCC with these specified changes. The differences

are the way in whictConstants andVariables are defined and ExampPLE 3. (Marking up the Interaction Model) Figure 5 shows
the addition of four new objectsClass, Context, Value and part of the interaction model of Figure 2 with the additional mark-
Holder. Constants and Variables both become complex objects up included. Since the interaction model with all this information
which contain, respectively, aalue or a holder (whose defini- explicit is rather unwieldy, we include only a small section.

tions are nearly identical to the original definitions @fhstant Both the type and the context can be extremely useful in interpret-
andwvariable), and information pertinent to that value or holder: ing the semantics. For example, tlvéne context indicates that the
type information (which we refer to here akiss to avoid confu- variable C, of typecolour, should be instantiated by red or white;
sion with thetype definition that refers to role types) and contextual and that the variablel/, of typemake should be instantiated by
information. Class information is a value or a holdeContext some make of wine and not, for example, a make of car.

information is less constrained: anything that defines the context Notice that predicates, which, in the LCC syntax, are defined
in a term could be used can provide the context, for example, the as Constants, have the same structure as any other constraint:
classification of the interaction model [9], Web directories [1] or Context : (Value, Class). It may be felt that type information
even user preferences [25Y alue is defined identically to LCC is inappropriate in describing predicates and, if so, this attribute
constant; Holder is similar toV ariable but, in addition to an up- will be instantiated by a white space, as occurs in the type attribute
per case character sequence or number being an acceptable inputf choose_wine in Figure 5. However, if the interaction model
white space is also acceptable and can be used in the case that adesigner or user wishes to give type information to predicates, he
interaction model designer does not know the pertinent information is at liberty to do this.

or does not wish to input it. The design of this syntax means that

it is easy to add extra attributes to constant and variable definitons4, STRUCTURE MATCHING

Shglélr?tgzuvf\glsiszrr?qgts'gﬁ can be derived from th text in which In order to perform semantic matching between the first-order
! v € contextinWhich . \qiraints found in an LCC interaction model, we consider the

tmhztliztr:a:aicéﬁrlr:z (i)rdiﬁ{ésr;cstﬁ)dn. ric())rdz)l(:mﬂec’lgse;'s mt!ght stoLe |nft?1r- first-order terms as trees and perform tree matching on them. There
siication Such as e 5 e yyo stages in the matching process:

one illustrated in Figure 4. The interaction model shown in Figure 2
would be the one stored undéfine-Selling-Recommendation. 1. Node matching: solves the semantic heterogeneity problem
This contextual information can be attached to any object in the in- by considering only labels at nodes and their contextual in-
teraction model and may prove useful in its semantic interpretation. formation inside constants in interaction model and web ser-



a(customer, C) ::
request(wine(P1, P, R,C,D,N) = a(wine_merchant, W)

Cxt = (wine-selling-recommendation)

— (Cuxt : choose_wine, ))

(Cxt : (Pr, mazium_price),
Cxt : (P2, minimum_price),
Cxt : (R, region),

Cuzt : (C, colour),

Cxt : (N, number_of bottles)

Figure 5: Semantic markup of interaction model

vice descriptors.

2. Tree matching: exploits the results of the node matching and
the structure of the term to find an overall match between the
terms in a web service description and in interaction model.

4.1 Node matching

Semantic matching, as from [8] is based on the 2 key notions:

e Concept of a labelwhich is a logical formula encoding the
meaning of a label;

e Concept of a node, which is a logical formula that encodes
the meaning of a node, given that it has a certain label and it is
in certain position in the term tree and in the IM classification

(see Figure 4 for example).

We say that two nodes; andn in the treesT; and 7> (se-
mantically) match iff the formulad@n; iff c@Qnsy” holds given the
available background knowledge, wher@n, andc@n. are the
concepts at nodes afi andn; respectively.

The semantic node matching algorithm, as introduced in [9],
takes as input two term trees and computes as output a set of cor-
respondences holding among the nodes in the trees in four macro

steps:

9] for detailed discussion). The main goal of sense filtering
techniques is to filter out irrelevant (for the given matching
task) Oracle senses from concepts of labels. For all concepts
of labels we collect all their ancestors and descendants. We
call them a focus set. Notice that the interaction model it-
self can be classified in tree like structure (see Figure 4 for
example). Therefore focus set is enriched with concept of
labels of the interaction model and its ancestors in the IM
classification. For example, as from Figures 4 and 6, for the
concept at nod€'r.4:0n(c) the focus set contains the fol-
lowing concepts of labelsCwine, Cchampagnes CRegion
taken from the term tree along withwine, Cseiting @and
CRecomendation taken from IM classification. Then, all Or-
acle senses of atomic concepts of labels from the focus set
are compared with the senses of the atomic concepts of la-
bels of the concept at node. If a sense of atomic concept of
label is connected by an Oracle relation with the sense taken
from the focus set, then all other senses of these atomic con-
cepts of labels are discarded. Therefore, as a result of sense
filtering step we have (i) the Oracle senses which are con-
nected with any other Oracle senses in the focus set or (ii)
all the Oracle senses otherwise. After this step the meaning
of concept of labels is reconciled in respect to the knowledge

. residing in both the term tree and IM classification structures.
e Step 1: for all labelsL in two trees, compute concepts of 9

labels,Cr. Step 1 is concerned with automatic translation e Step 3: for all pairs of labels in two trees, compute relations
of ambiguous natural language labels taken from the term amongC'’s. Step 3 is concerned with acquisition of "world”
tree elements into an internal logical language with boolean knowledge. Relations between concepts of labels are com-
semantics (see [9] for more detail). The process involves puted with the help of a library of element level semantic
tokenization, lemmatization, querying the Oracle (such as matchers (see [9] for more detail). These matchers take as in-
WordNet [19]) in order to determine the label senses, and, put two concepts of labels and produce as output a semantic
finally, the complex concept construction. The last step is relation (e.g., equivalence, more/less general) between them.
concerned with interpretation of certain natural language la- For example, from WordNet we can derive that region and
bels as the logical connectives (for example both natural lan- area are synonyms, and therefatgegion = Carea-

guageand andor are translated into disjunction) and word
sense disambiguation (see [17] for more detail). Thus, for ex-
ample, the concept of labBlumber of bottlegs computed as
CNumbe'r of bottles — CNumber’_‘Cbottles, Wherecbottles =
(bottle, sensesw n #4) is taken to be the union of four Word-
Net senses, and similarly foumber

e Step 4: for all pairs of nodes in two trees, compute rela-
tions amondg”'x’s. Step 4 is concerned with the computation
of the relations between concepts at nodes. This is done by
reducing this problem to a propositional satisfiability (SAT)
problem and by exploiting state of the art SAT decider [8, 9].

. ) It is important to notice that Step 1 and Step 2 can be done once
o Step 2: for all nodesV in two trees, compute concepts at  {o 4| independently of the specific matching problem. Step 3 and

nodes,C'y. During Step 2 we analyze the meaning of the  gie 4 can only be done at run time, once the two trees which must
positions that the labels of nodes have in a tree. Term trees p, atched have been chosen.

are hierarchical structures where the path from the root to .

a node uniquely identifies that node (and also its meaning). 4.2  Tree matching

We define the logical formula for a concept at node as acon- |y order to match first-order terms, we consider them as trees.
junction of concepts of labels located in the path from the Thys a constraint such asine(Cat : (champagne, region),
given node to the root. For example, in the Figure 6, the con- . . (white, colour) would be represented as shown in Figure 6,
cept at node for the node Region(C) is computed as follows: \yhereC'zt is left implicit.

CRegion(0) = Cwine M Cchampagne M CRegion- In order to satisfy a set of constraints in a message in an interac-
In order to constrain the set of possible concept at node in- tion model, it is necessary to satisfy at least one constraint of ev-
terpretations the sense filtering techniques are used (see [17 ery disjunction in the CNF. In a more complex situation, we might



Wine(P) . Node struct of
i nt nodel d;
String |abel;
Champagne (T)  Colour(T) String cLabel ;
String cNode;

. Mappi ngEl enent struct of
int Mappi ngEl enent | d;
Node source;

Node t arget;

0. String relation;

RegionC) White(C)

BoeNohwNE

P = predicate; T = type; C = constant

11. Mappi ngEl enent [] exact StructureMat ch(Tree of Nodes
. . source, target)
Figure 6: Constraint wine(champagne, white) expressed as a 12. Mappi ngEl ement[] result;
tree 13. exact TreeMat ch(source, target,result);
14. if (all NodesMapped(source,target,result))
15. return result;

. . . 16. el se
match a smgle constraint to many constraints, or match many-to- 17.  return nul | :

many; however, we only consider one-to-one matching in this pa-
per 18. voi d exact TreeMat ch(Tree of Nodes source,target,
. . N . . Mappi ngEl ement resul t

Semantic node matchlng is done prior to the tree mqtchlng Pro- 19, Node sour ceRoot =get Root (Soﬂfce)g; [ )
cess, and the results of this are used to determine which nodes ine0. Node t ar get Root =get Root (t ar get ) ;
the trees correspond to each other, and, when extended to deal witt#1: IS; r '( ny ;f: g;'_‘_’,’]j_ nodeMat ch(sour ceRoot , tar get Root ) ;
approximate mapping, how strong thl$ correspondence is. Seme_ln-23. addMappi ng(r esul t, sour ceRoot , t ar get Root , " =") :
tic tree matching is thus the combination of the results of semantic 24. Node[] sourceChi | dren=get Chi | dr en(sour ceRoot ) ;
node matching with techniques that take into account the structuregg- EOde[] ;arga Ch'c'hdlrgn,:get Chi | déﬁhl(gaf get Root ) ;

. . . or each source(Cni I'n sourceCni ren
of the term. It mu_st_determlne not only whether th_e ob_Jects used 57 "Tree of Nodes sourceChil dSubTree=
are the same or similar but whether they are organized in the same get SubTr ee( sour ceChi | d) ;
manner. This organization of the terms encodes important semantic28.  For eaC? target Node in _tlar get ~
information about how they relate to one another, and the semantic?®:  T"e¢ of Nodes target g;'t Sﬂﬁ#?;?f;r get Chi | d) :
tree matching techniques determine whether these relationship aresp. exact Tr eeMat ch( sour ceChi | dSubTr ee,
the same or similar between apparently different constraints. target Chi | dSubTr ee, nodesToMat ch) ;

In order to participate in this process, peers must have represen- ) _
tations of constrains they know how to satisfy written in the same __Figure 7: Pseudo Code for Structure Matching Algorithm
manner as the LCC constraints. This does not enforce any control
on the representation of their knowledge base in general, it merely
requires that peers are able represent their abilities in this manner, . o +ees of nodes (i.e., tree representation of LCC tesus)ce

and that they can sgtlsfy such constraints. These known constralntsand target and array of MappingElementssult as an input. It
are what the matching process must refer to.

. . recursively fillsresultwith the mappings computed mpdeMatch
T %eerS:)i/stga;ltotc\iN; tr?ne”sgl 2SghTt2hg]tatCh iff for any nodeni; in (line 23). exactTreeMatchstarts from obtaining the roots séburce
1 21 T o2 andtargettrees (lines 19-20). The semantic relation holding be-
tween them is computed hyodeMatch (line 21) implementing
the node matching algorithm. If the relation is equivalence, the
e n11 andng; reside on the same depth’ih and T, respec- corresponding mapping is savedrasult array (lines 22-23) and
tively; the children of the root nodes are obtained (line 24-25). Finally the
loops onsourceChildrerandtargetChildren(lines 26-30) allow to
¢ allancestors of,11 are semantically matched to the ancestors  call exactTreeMatchrecursively for all pairs of sub trees rooted at
of na1; sourceChildrerandtargetChildrenelements.
) . The above algorithm is designed to succeed for equivalent terms
At this stage, we assume that the problem of semantic node 5nq 1o fail otherwise. It expects the trees to have the same depth

matching has been dealt with and can be called as a subprocess ofnq for all matching nodes to have the same number of children.
the semantic structure matching, the details of which are discussed

in Section 4.1. ExXAMPLE 4. (Semantic matching in the Interaction Model) Imag-
The pseudo code in Figure 7 illustrates an algorithm for exact ine, for example, that aine_merchant peer, acting on James’s
structure matchingexactStructureMatch takes two trees of nodes  behalf, sent the interaction model described in Figure 2 to a peer
(i.e., tree representation of LCC termsjurceand target as an that advertised that it wished to participate in wine buying. This
input. Here and throughout the paper we assume that the sourcepeer would have to evaluate its ability to satisfy the constraints of
tree is derived from an interaction model constraint and the target the role and the desirability of satisfying the consequences of the
tree represents the term derived from the peer capability descrip-role before it could play the part. The first constraint it must satisfy
tion. exactStructureMatch returns an array dflappingElements is choose_wine(P1, P, R,C, N), which is illustrated with full
holding between the nodes of the trees if there is an exact matchmark-up information in Figure 5. Imagine that it knows of no such
between them and null otherwise. ArrayMgappingElements re- constraint but that it knows a constraiptick(C, N, A, P1, P»).
sult is created (line 12) and filled bgxactTreeMatch (line 13). These two constraints, with type information, are represented in
allNodesMappedchecks whether all the nodes of source tree are Figure 8.
mapped to the nodes of the target tree (line 14). If this is the case The node matching algorithm first attempts to match the root
there is an exact structure match between the trees and the set ofiode of the left-hand tree;hoose_wine, with the root node of
computed mappings is returned (line 18xactTreeMatch takes the right-hand treepick. A semantic matcher will find an equiv-

e n;; semantically matches,;
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Figure 8: Comparison of two constraints as trees

alence betweewrhoose and pick, but thewine element has no
match inpick, thus indicating that perhapshoose_wine is more
specific tharpick. However, the contextual information can help
here, since it gives the information that the terms must be inter-
preted within awine context. Thupick becomes equivalent to
choose_wine. Next, a match foh ax_price must be found amongst
the node at the same level in the right-hand tree. Order is not im-
portant here, so a perfect match can be found with the fourth at-
tribute in the right-hand tree. Perfect matches can be found in the
same way for all the nodes with the exceptionRafgion; how-

ever, semantic matching can determine that this is equivalent, in 21.

the given context, talrea. All nodes in both trees therefore have
exact matches, and so an exact match is found between the trees.

4.3 Approximate matching

The matching techniques described in the previous section rely

1. Mappi ngEl enent [] appr oxi mat eSt r uct ur eMat ch(
Tree of Nodes source, target, double threshold)

2. MappingEl enent[] result;

3. approxi mateTreeMat ch(source,target,result);

4. doubl e approxi mati onScor e=anal yzeM snat ches(source,
target,result);

5. if (approximationScore>threshol d)

6. return result;

7. else

8. return null;

9. voi d approxi mateTreeMat ch(Tree of Nodes source,
target, Mappi ngEl ement [] result)
Node sour ceRoot =get Root (sour ce) ;
Node t ar get Root =get Root (t arget);
. String relati on= nodeMat ch(sour ceRoot, t ar get Root ) ;
13. if (relation!="1dk")
addMappi ng(resul t, sourceRoot, t ar get Root, rel ation);
Node[] sourceChil dren=get Chil dren(sour ceRoot);
Node[] target Chil dren=get Chil dren(targetRoot);
For each sourceChild in sourceChildren
Tree of Nodes sourceChil dSubTree=
get SubTr ee(sourceChil d);
For each targetNode in target
Tree of Nodes targetChil dSubTree=
get SubTree(target Child);
appr oxi mat eTr eeMat ch( sour ceChi | dSubTr ee,
target Chil dSubTree, nodesToMatch);

Figure 9: Pseudo Code for Approximate Structural Matching

on the semantic content of the constraints known by the peers being

identical with that of the constraints found in a particular interac-
tion model. Whilst it is clearly ideal that a peer should perform a
role only if it can find constraints it knows that map exactly to the
constraints that are required for the performance of the role, this i

Let us give a brief (due to a lack of space) description of the tree
edit distance problem. In its traditional formulation, the tree edit
distance problem considers three operations: (a) vertex removal,

s (b) vertex insertion, and (c) vertex replacement [28]. To each of

a heavy demand that may often mean that no suitable peer can pahese operations, a cost is assigned. The solution of this problem

found at all. In practice, we wish to find ‘good enough’ solutions
to queries [11] if perfect answers are no available.

We say that two nodes; andns in the treesi; and7: approx-
imately match iffc@n; R c@ny holds given the available back-
ground knowledge, whekgdn; andc@n;, are the concepts at nodes
of n1 andng, and whereR € {=,C, D, A, L, not related}.

We say that two tree®; and7: match iff there is at least one
noden:: in 71 and a noderz; in 7> such that

e 17 approximately matches,;

e all ancestors ofi1; are approximately matched to the ances-
tors ofnas;

The key difference between exact and approximate match is in
the fact that in the latter case we allow mismatches both on the node

and structure level.

The pseudo code in Figure 9 illustrates approximate structure

matching algorithm. In contrast éxactStructureMatch presented
in Figure 7 approximateStructureMatch takes as an input not
only sourceandtargetterm trees but alsthresholdallowing to se-
lect highly similar term treesapproximateTreeMatch fills result

consists in determining the minimal set of operations (i.e., the one
with the minimum cost) to transform one tree into another. Another
equivalent (and possibly more intuitive) formulation of this prob-
lem is to discover a (proper) mapping with minimum cost between
the two trees. The concept of (proper) mapping (introduced in [28])
is defined next.

Let T, be a tree and IeT,[i] be the i-st vertex of tre@, in a
preorder walk of the tree. A (proper) mapping between aTieaf
sizen: and a tre€l, of sizen; is a setM of ordered pairgs, j),
satisfying the following conditions for alli1, j1), (i, j2) € M:

1. i1 =iz iff j1 = jo;
2. Ti[i1] is onthe left off [i2] iff T5[j1] is on the left oI [j2];

3. Ti[i1] is an ancestor ofy[i2] iff T3[j1] is an ancestor of
To[j2].

In our case the approximate structure matching algorithm pro-
duces a partial mapping among the nodes of two trees. In order to
apply a tree edit distance algorithm we have to ensure that it is a
(proper) mapping (i.e, it satisfies the conditions presented above).

array (line 3) which stores the mappings holding between nodes of The first condition requires a 1 to 1 mapping. Therefore we drop

the treesapproximationScores computed (line 4) bgnalyzeMis-
matches If approximationScorexceedghresholdthe mappings
calculated byapproximateTreeMatch are returned (line 6). In
contrast toexactTreeMatch presented in Figure @pproximate-

from the partial mapping all the correspondences that violate this
requirement. The second condition requires the order preservation
among sibling nodes. Notice that sibling ordering does not influ-

ence on the ability of the peer to interpret the constraint. There-

TreeMatch considers also semantic relations other then equiva- fore, in order to satisfy the condition, the sibling nodes have to be
lence (line 13) and stores them fasult array (line 14). ana- reordered. Figure 11 illustrate an example of such reordering for
lyzeMismatchesdecides the importance of the mismatches among the trees depicted on Figure 10. The third condition enforces the
the nodes of the trees (if any) and calculates the aggregate score ohierarchical relation between the nodes of the trees. In order to sat-
tree match quality by exploiting a tree edit distance algorithm [30, isfy it we drop from the partial mapping all the correspondences
28]. that violate this condition. Notice that the approximate structure



Choose_wine Pick between the trees given the weights for the editing operations de-
scribed above is: 0.5+1+1=2.5. The similarity score for the trees
depicted on Figure 10 is 1-2.5/6=0.58.

Region Max_price 5. EVALUATION
We have implemented the algorithm described in the previous
Figure 10: Approximate mappings between two constraints section in Java and evaluated its matching quality on the 66 pairs of
similar first order logic terms extracted from different versions of
Choose wine Pick the Standard Upper Merged Ontology (SUM@d the Advance

Knowledge Transfer (AKT ontologies. We extracted all the dif-
ferences between versions 1.50 and 1.51, and 1.51 and 1.52 of the
SUMO ontology and between versions 1, 2.1 and 2.2 of the AKT-
Min_pric Age portal and AKT-support ontologiésThese are both first-order on-
Country tologies, so many of these differences mapped well to the potential

differences between constraints that we are investigating. However,
some of them were more complex, such as differences in inference
rules, or consisted of ontological objects being added or removed
rather than altered, and had no parallel in our work. These pairs of
terms were discarded and our tests were run on all remaining differ-
ences between these ontologies. We have therefore simulated the
situation when the peer capabilities are defined in one version of the
ontology and the constraints in the interaction model are expressed
exploiting the other version of the same ontology.

We have calculated Recall defined as the ratio of the correct cor-

Region

Figure 11: Reordering of constraints

matching algorithm produces the correspondences which stand for
equivalence, less/more generality and disjointness relations. In or-
der to discriminate among them we modified the costs of the tree
edit distance operations as depicted in Table 1.

Table 1: Cost of tree editing operations respondences produced by the matching system to the total number
Operation Cost of correct correspondences. We have also calculated the Recall for
replace(a,b)y = b 0 the various values of threshold for approximate structure matching
replace(a,b)a C b 05 algorithm. Since all the pairs of terms in the dataset are equivalent
replace(a,b)e J b 05 we were unable to calculate Precision defined as the ratio of cor-
replace(a,b)g L b s rect cc_)rrespondences to all th_e correspondences produced _by the
replace(a,b), a is not related to|b 1 matching system. The evaluation was performed on the Pentium 4
insert(a) 1 computer._ . -

delete(a) 1 Interestingly enough our exact structure matching algorithm was

able to find 36 correct correspondences what stands for 54% of Re-

. . . call. All mismatches corresponded to structural differences among
To ensure a quick prototyping approach we selected a simple treegj; order terms which exact structure matching algorithm is unable
edit distance algorithm from Valiente’s work [29]. In this algorithm capture.

deletion and insertion Operations are performed Only on the leave The examples Of Correcﬂy found Correspondences are given be_
nodes. When deleting a non-leaf nadeevery node in the subtree  |ow:
rooted at has to be deleted first. The same applies to the insertion
of non-leaf nodes. The algorithm finds the least-cost transformation et i ng-at t endees(has- ot her - agent s-i nvol ved)
of an ordered tre@; andTs in O(|n1||nz|) time usingO(|n1 ||n2|) meet i ng-at t endee( has- ot her -agent s-invol ved)
additional space (see Lemma 2.20 in [29]). r&-i nstit ut e( Lear ni ng- cent r ed- or gani zat i on)
Since we were interested in similarity rather than in distance we '-and-d-institute(Learni ng-centred-organi zati on)

exploited the following similarity score: pi ece( Pur 62, M xt ur )

. EditDistance part (Pure2, M xture)
Sim=1—————+— (1) S .
max(ni,n2) has-affiliatied-peopl e(Affiliated-person)
has-affilil ated-person(affiliated-person)

wheren; andn. stand for the number of nodes in the trees.
) o ] The first and the second example illustrate the minor syntactic

EXAMPLE 5. (Approximate Matching in the Interaction Model)  gifferences which prevent the unification process to interpret the
Imagine if the classification that the.stormer peer was attempt-  term correctly, while the third and fourth examples illustrate the
ing to matchchoose_wine(Py, P2, R, C, N) to was in fact, semantic heterogeneity in the various versions of the ontologies.
pick(Ag, Ct, Py, P»), whereN, P, and P, representthe same types  Figure 12 presents the Recall of approximate structure matching
as previouslyAg represents typege andC't represents type coun-  ajgorithm depending on the cut-off threshold value. As from the
try. The mappings between these terms are illustrated in Figure figyre the algorithm demonstrates high Recall on the wide range of
10.  The map between the root node would be discovered as ex+hreshold values. For example, Recall for 0.5 threshold is slightly

plained in Example 3. The first node at the second level in the |gwer than 88% what is a high result for any of state of the art
left-hand tree, M ax _price would, as before, find an exact match,

as wouldMin_price. The nodeRegion has a map taCountry, Lhttp://ontology.teknowledge.com/
as, according to the peer’s taxonomy, a region is part of a country thtp:llwww.aktors.org

(i.e, Region = Country). Notice that Colour, Number of Bot-  3see http://dream.inf.ed.ac.uk/projects/dor/ for full versions of
tles and Age nodes are left unmapped. Therefore the edit distancethese ontologies and analysis of their differences
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we allow run-time recruitment for services. Moreover, standard ap-
proaches allow run-time composition of simple services into com-
plex ones whereas we use predefined interaction models to define
the ways in which composition can occur. This restriction - of re-

E iggf{ ' cruiting services for predefined workflows rather than performing
30'_002 ] arbitrary composition - means that many of the difficulties that have
20.0% - proved so far insurmountable become tractable.

10.0% 4 The problem of location of web services on the basis of the ca-

0.0% pabilities that they provide (often referred as matchmaking prob-

lem) recently have received a considerable attention. Most of the
approaches to the matchmaking problem so far employed a single
ontology approach (i.e., the web services are assumed to be anno-
tated with the concepts taken from the shared ontology). See [24,
14, 15] for example. Probably the most similar to ours was the ap-
proach taken in [23] where the services are assumed to be annotated
with the concepts taken from various ontologies. Then the match-
making problem is solved by the application of the matching algo-
rithm. The algorithm combines the results of atomic matchers that
roughly correspond to the element level matchers exploited by us
in the Step 3 of node matching algorithm in Section 4.1. In contrast
to this work we exploit a more sophisticated matching technique
that allow us to utilize various forms of context.

0 01 02 03 04 05 06 07 08 09 1
Threshold

Figure 12: Recall depending on threshold value

matching systems (see [6] for the latest ontology matching evalua-
tion results).

Table 2 summarizes the time performance of the matching algo-
rithm. It presents the average time taken by the various steps of

Table 2: Time performance of approximate structure matching
algorithm (average on 66 term matching tasks)

Node matching] Node matching] Tree matching The ontology matching problem has received a considerable at-
Stepland2 | Step3and4 tention in the last years. Many diverse solutions have been pro-
Time. ms 158.6 28 12 posed so far [21, 16, 5, 26, 3]. However most of efforts were de-

voted to computation of the correspondences holding among the

. ) classes of description logic ontologies. Recently several approaches
the algorithm on 66 term matching tasks. As from the table Step 1 gjjowed computation of correspondences holding among the ob-

and 2 of the node matching algorithm significantly slow down the ject properties (or binary predicates) [13, 20, 27]. Differently from

whole process. However, as discussed in section 4.1, these stepghese approaches we allow computation of correspondences hold-
correspond to the linguistic preprocessing of the natural Ianguageing among first order terms.

labels that can be performed once and later reused by the matching

process. Given that the term can be automatically annotated with

the linguistic preprocessing results [9], the term matching task is 7. CONCLUSION

performed in average in 6 ms what corresponds roughly to 160 term  The work described in this paper constitutes a new approach to
matching tasks per second and satisfies to the requirements of rurweb service composition: the idea that through the use of shared

time web service composition. declarative interaction specifications, which can be discovered dur-
ing run-time, we can facilitate automatic interaction between ser-
6. RELATED WORK vices without enforcing strict semantic agreement or annotation.

_ o o ) We presented the techniques through which this idea can be im-
The main contribution of the work presented in this paper is 10 plemented. We extended the established LCC language to allow
provide an alternative approach to Web service composition. The for the inclusion of contextual information to facilitate semantic
state of the art approaches to the web service composition eithermatching. We then developed novel techniques that allow exist-
rely on the manual composition in design time [2] or provide the jng semantic matching techniques to be applied to the matching of
support for (semi-Jautomated web service composition given that |ogical terms through consideration of the structure of those terms.
the web services are annotated with the concepts derived from ei-The combination of these two contributions extend the applicabil-
ther shared ontology or vocabulary [7, 18]. Our approach is in ity of these specifications of interactions from a closed to an open
between of these two extremes. The interaction models describedapyironment. and are thus applicable to peer-to-peer networks of
in this paper differently from [2] do not specify the services partici- arbitrary size. Finally, we introduced our approximate matching
pating in the interaction but define the constraints the services havetechniques which extend our semantic matching techniques to al-

to satisfy. This kind of specification on the other hand allows us |\ the return of good enough answers in the case where perfect
to simplify the problem of run time web service composition and 5nswers are unavailable.

relax a shared ontology requirement.
In particular, Web service composition techniques [7, 18] tend
to assume that (i) services are annotated with terms taken from an8. ACKNOWLEDGMENT
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